Since the result of f(x+1/x) is a quadratic function, then
f(x) is a quadratic function, too.
If f(x) is a quadratic
function, we'll have:
f(x) = a`x^(2)` + bx +
c
We'll replace x by the sum x +
1/x
f(x + 1/x) = a`(x + 1/x)^(2)` + b(x + 1/x) +
c
We'll expand the square:
`(x
+ 1/x)^(2)` = `x^(2)` + 1/`x^(2)` + 2
The function will
become:
f(x + 1/x) = a(`x^(2)` + 1/`x^(2)` + 2) + b(x +
1/x) + c
Since, from enunciation, we'll have f(x + 1/x) =
`x^(2)` + 1/`x^(2)` :
a(`x^(2)` + 1/`x^(2)` + 2) + b(x +
1/x) + c = `x^(2)` + 1/`x^(2)`
Comparing both sides, we'll
get:
a= 1
b =
0
c = -2
1*(`x^(2)` +
1/`x^(2)` + 2) + 0*(x + 1/x) - 2 = `x^(2)` +
1/`x^(2)`
`x^(2)` + 1/`x^(2)` + 2 - 2 = `x^(2)` +
1/`x^(2)`
Therefore, the requested function
f(x) is: f(x) = `x^(2)` - 2.
No comments:
Post a Comment