We'll have to apply the following identity to prove the
given expression:
sin(a-b) = sin a*cos b - sin b*cos
a
Let a = `pi` /2 and b =
x
sin (`pi` /2 - x) = sin `pi` /2*cos x - sin x* cos `pi`
/2
But sin `pi` /2 = 1 and cos `pi` /2 =
0
sin (`pi` /2 - x) = 1*cos x - sin
x*0
sin (`pi` /2 - x) = cos
x
Therefore, the given expression sin (`pi`
/2 - x) = cos x represents an identity.
No comments:
Post a Comment