First, you need to write this expression correctly, using
brackets:
tan(a+b) = (tan a + tan b)/(1 - tan a*tan
b)
We'll prove this identity, using the information that
tangen function is a ratio:
tan (a+b) = sin (a+b)/cos
(a+b)
We'll use the following
identities:
sin (a+b) = sin a*cos b + sin b*cos
a
cos (a+b) = cos a*cos b - sin a*sin
b
tan (a+b) = (sin a*cos b + sin b*cos a)/(cos a*cos b -
sin a*sin b)
We'll force factor cos a*cos b, both numerator
and denominator, creating the tangent functions within
brackets:
tan (a+b) = cos a*cos b( tan a + tan b)/cos a*cos
b(1 - tan a*tan b)
We'll simplify and we'll
get:
tan (a+b) = (tan a + tan b)/(1 - tan a*tan
b)
Therefore, the identity tan (a+b) = (tan a
+ tan b)/(1 - tan a*tan b) is verified.
No comments:
Post a Comment