It is given that A + B + C = 180. We have to prove that
sin 2A - sin 2B + sin 2C = -4*sin A*cos B*cos C
sin 2A -
sin 2B + sin 2C
=> 2*sin [(2A - 2B)/2]*cos[(2A +
2B)/2] + sin 2C
=> 2*sin (A - B)*cos(A + B) + sin
2C
=> -2*sin (A - B)*cos C + 2*sin C*cos
C
=> -2*cos C[sin(A - B) - sin
C]
=> -2*cos C*2*sin[(A - B - C)/2]*cos[(A - B +
C)/2]
=> -4*cos C*sin[(A + A - 180)/2]*cos[(180 - B
- B)/2]
=> -4*cos C*sin(A - 90)*cos(90 -
B)
=> -4*cos C*cos A*sin
B
The result that you have got is
right.
No comments:
Post a Comment