To determine the primitive function Y, we'll have to
calculate the indefinite integral of the given function:
x*`e^(x)`dx = `int`dy = Y
We'll integrate by parts using
the formula:
udv = uv -
vdu
Let u = x => du =
dx
Let dv = `e^(x)` dx => v =
`e^(x)`
x*`e^(x)` dx = x*`e^(x)` - `int` `e^(x)`
dx
x*`e^(x)`= x*`e^(x)`- `e^(x)`+
C
The requested primitive function
is Y = (x-1)*`e^(x)` + C.
No comments:
Post a Comment