The sum of the three roots of the given polynomial could
be found using Viete's relation:
x1 + x2 + x3 = -b/a, where
x1,x2,x3 are the roots of the polynomial and a,b are the coefficients of the polynomial
ax^3 + bx^2 + cx + d.
We'll identify the value of the
leading coefficient as a = 1 and the value of b = -3.
The
sum of the roots will yields:
x1 + x2 + x3 =
-(-3)/1
x1 + x2 + x3 = 3
We
could solve this problem, finding the roots of the polynomial first, then calculating
their sum.
x^3 - 3x^2 + 2x =
0
We'll factorize by x:
x(x^2
- 3x + 2) = 0
We'll cancel each
factor:
x1 = 0
Since the sum
of the roots of quadratic within brackets is 3 and the product is 2, the roots will be
x2 = 1 and x3 = 2.
The usm will be x1 + x2 + x3 = 0 + 1 + 2
= 3.
Therefore, the sum of the roots of the
given polynomial is x1 + x2 + x3 = 3.
No comments:
Post a Comment