Friday, January 1, 2016

factorise : a^3-8b^3-64c^3-24abc

We notice that a^3 - 8b^3 - 64c^3 can be get if we'll
raise to cube the difference (a - 2b - 4c)^3


We'll raise
the trinomial to square:


(a - 2b - 4c)^2 = a^2 + 4b^2 +
16c^2 - 4ab - 8ac + 16bc


Now, we'll multiply the result by
(a - 2b - 4c):


(a^2 + 4b^2 + 16c^2 - 4ab - 8ac + 16bc)(a -
2b - 4c) = a^3 - 2a^2*b - 4a^2*c + 4a*b^2 - 8b^3 - 16b^2*c + 16ac^2 - 32bc^2 - 64c^3 -
4a^2*b + 8b^2*a + 16abc - 8a^2*c + 16abc + 32ac^2 + 16abc - 32b^2*c -
64bc^2.


Combining like terms,we'll
get:


(a - 2b - 4c)^3 = a^3 - 8b^3 - 64c^3 + 48 abc +
...


Therefore, we'll keep to the left side a^3 - 8b^3 -
64c^3 - 24 abc:


a^3 - 8b^3 - 64c^3 - 24 abc = (a - 2b -
4c)^3 - 72 abc + 6a^2b + 12a^2c - 12ab^2 - 48ac^2 + 48b^2c +
96bc^2


a^3 - 8b^3 - 64c^3 - 24 abc = (a - 2b
- 4c)^3 - 72 abc + 6a^2*(b - 2c) - 12a(b^2 + 2c^2) + 48bc(b +
2c)

No comments:

Post a Comment

What is the meaning of the 4th stanza of Eliot's Preludes, especially the lines "I am moved by fancies...Infinitely suffering thing".

A century old this year, T.S. Eliot's Preludes raises the curtain on his great modernist masterpieces, The Love...