If the angle between the vectors u and v is obtuse, then
the value of cosine of the angle between u and v must be within the interval
(-1,0).
We'll calculate the cosine of the angle from the
dot product between `vecu ` and `vecv` .
We'll recall the
formula that gives the dot product of `vecu` and `vecv`
:
`vecu` *`vecv` = |`vecu|` *|`vecv` |*cos(`vecu,vecv`
)
We'll calculate the product of
vectors:
`vecu*vecv =
(5i-4j)(2i+3j)`
`vecu*vecv = 5*2*veci^2 + 5*3*veci*vecj -
4*2*vecj*veci - 4*3*vecj^2`
`veci^2 = veci*veci =
|veci|*|veci|*cos 0`
But `|veci| = |vecj| =
1`
`veci*vecj = |veci|*|vecj|*cos90 =
0`
`vecu*vecv = 10 - 12 =
-2`
`|vecu| = sqrt(5^2 +
4^2)`
`|vecu| =
sqrt41`
`|vecv| = sqrt(2^2 +
3^2)`
`|vecv| = sqrt13`
We'll
calculate the cosine between the vectors u and v:
cos(`vecu
, vecv` ) = `(vecu*vecv)/(|vecu||vecv|)`
`cos(vecu,vecv) =
-2/sqrt533 < 0`
Since the value of
cosine angle is between the interval (-1,0) the angle closed by the vectors u and v is
obtuse.
No comments:
Post a Comment