We know that sin x = cos (pi/2 - x), therefore we can
create a difference of two matching trigonometric functions, to the left
side:
cos x - cos (pi/2 - x)=√2
cos(pi/4+x)
We'll transform the formula into a
product:
cos a - cos b =
2sin[(a+b)/2]*sin[(b-a)/2]
cos x - cos (pi/2 - x)=2sin[(x +
pi/2 - x)/2]*sin(pi/2 - 2x)/2
cos x - cos (pi/2 -
x)=2sin[(pi/2)/2]*sin(pi/2 - 2x)/2
cos x - cos (pi/2 -
x)=2sin(pi/4)*sin(pi/4-2x/2)
But sin pi/4 =
√2/2
cos x - cos (pi/2 -
x)=2√2sin(pi/4-x)/2
We'll
simplify:
cos x - cos (pi/2 -
x)=√2sin(pi/4-x)
But sin(pi/4-x) = cos (pi/4 + x),
therefore cos x - cos (pi/2 - x)=√2cos (pi/4 +
x)
Therefore, the given identity cos x -sin x
= √2cos (pi/4 + x) is verified.
No comments:
Post a Comment