The antiderivative of the given function is the primitive
function that could be determined calculating the indefinite integral of
y.
We'll solve this integral using substitution
technique.
Let sin x = t => cos dx =
dt
We'll use Pythagorean identity to write (cos x)^2, with
respect to (sin x)^2:
(cos x)^2 = 1 - (sin
x)^2
We'll get the indefinite
integral:
`int` 2sin x*(cos x)^2* cos x dx = 2 `int` sin
x*[1 - (sin x)^2]* cos x dx
`int` 2t*(1-t^2)dt = 2`int` t
dt - 2 `int` t^3 dt
2 `int` 2t*(1-t^2)dt = 2t^2/2 - 2t^4/4
+ C
`int` 2t*(1-t^2)dt = t^2 - t^4/2 +
C
`int` 2sin x*(cos x)^2* cos x dx = (sin x)^2 - (sin
x)^4/2 + C
The antiderivative of the given
function is the primitive function Y = (sin x)^2 - (sin x)^4/2 +
C.
No comments:
Post a Comment