Saturday, July 19, 2014

Given the terms of a arithmetic sequence a,b,c, verify if 3(a^2+b^2+c^2)=6(a-b)^2+(a+b+c)^2?

We notice that if we'll raise to square the sum a+b+c,
we'll get:


`(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + ac +
bc)`


The identity to be verified
is:


`3(a^2+b^2+c^2)=6(a-b)^2+(a+b+c)^2`


`3(a^2+b^2+c^2)
= 6(a-b)^2+a^2 + b^2 + c^2`  + 2(ab + ac +
bc)


`3(a^2+b^2+c^2) - (a^2 + b^2 + c^2) = 6(a-b)^2` + 2(ab
+ ac + bc)


`2(a^2+b^2+c^2) = 6(a-b)^2` + 2(ab + ac +
bc)


We'll divide by 2 both
sides:


`(a^2+b^2+c^2) = 3(a-b)^2` + (ab + ac +
bc)


We'll expand the binomial from the right
side:


`(a^2+b^2+c^2) = 3a^2 - 6ab + 3b^2` + (ab + ac +
bc)


`-2a^2 - 2b^2+ c^2`  = (ab + ac + bc) -
6ab


But b = `(a+c)/2`


2b = a +
c


If we'll raise to square both sides, we'll
get:


`4b^2 = a^2 + 2ac + c^2 =gt 2ac = 4b^2 - a^2 -
c^2`


`-2a^2 - 2b^2+ c^2 = b(a+c) + ac -
6ab`


`-2a^2 - 2b^2+ c^2 = 2b^2 + (4b^2 - a^2 - c^2)/2 -
6ab`


`-2a^2 - 2b^2+ c^2 = 4b^2 - a^2/2 - c^2/2 -
6ab`


`-6b^2 = 3a^2/2 + 3c^2/2 -
6ab`


-`12b^2 = 3(a^2 + c^2) -
12ab`


`4b^2 = 4ab - a^2 -
c^2`


`b = a+d =gt b^2 = a^2 + 2ad +
d^2`


`c = a+2d =gt c^2 = a^2 + 4ad +
4d^2`


`ab = a^2 + ad`


`4a^2 +
8ad + 4d^2 = 4a^2 + 4ad- a^2 - a^2- 4ad` -`4d^2`


8ad +
`4d^2 ` = - `2a^2`  - `4d^2 8d^2 = -2a^2 -
8ad`


We notice that the given expression does
not represent an identity since `8d^2`  `!=`  `-2a^2 - 8ad` , if a,b,c are the
consecutive terms of a arithmetical progression.

No comments:

Post a Comment

What is the meaning of the 4th stanza of Eliot's Preludes, especially the lines "I am moved by fancies...Infinitely suffering thing".

A century old this year, T.S. Eliot's Preludes raises the curtain on his great modernist masterpieces, The Love...