You need to use the substitution `cos theta = (1 - y^2)/(1
+ y^2)`
`y = tan (theta/2) =gt dy = (d
theta)/(2cos^2(theta/2)) =gt d theta = (2(1 - y^2)dy)/(1 +
y^2)`
`int (d theta)/(1 + cos theta) = int (2(1 -
y^2)dy)/(1 + y^2)/((1 + y^2 +1 - y^2)/(1 + y^2))`
`` `int
(2(1 - y^2)dy)/(1 + y^2 +1 - y^2) = 2int ((1 -
y^2)dy)/2`
`2int ((1 - y^2)dy)/2 = int dy - int y^2 dy = y
- y^3/3 + c`
You need to come back to the original variable
such that:
`int (d theta)/(1 + cos theta) = tan (theta/2) -
(tan^3 (theta/2))/3 + c`
Hence, evaluating
the given integral yields:`int (d theta)/(1 + cos theta) = tan (theta/2) - (tan^3
(theta/2))/3 + c`
No comments:
Post a Comment