We'll use substitution to evaluate the indefinite
integral.
Let x^4 + x =
t
We'll differentiate both sides and we'll
get:
(4x^3 + 1)dx = dt
Int
(4x^3 + 1)*sqrt(x^4 + x)dx = Int (sqrt t)dt
Int (sqrt t)dt
= Int t^(1/2) dt
Int t^(1/2) dt = t^(1/2 + 1)/(1/2 + 1) +
C
Int t^(1/2) dt = 2t^(3/2)/3 +
C
Int t^(1/2) dt = [2t*sqrt(t)]/3 +
C
Therefore, the indefinite integral of the
given function is Int (4x^3 + 1)*sqrt(x^4 + x)dx = [2*(x^4 + x)*sqrt(x^4 + x)]/3 +
C.
No comments:
Post a Comment