We'll apply Pythagorean
identity:
(tan x)^2 + 1 = 1/(cos
x)^2
(cos x)^2 = 1/[(tan x)^2 +
1]
We'll plug in the given value of tan
x:
(cos x)^2 = 1/[(-12/5)^2 +
1]
(cos x)^2 = 1/(144/25 +
1)
(cos x)^2 =
25/(144+25)
(cos x)^2 =
25/169
cos x = +sqrt (25/169) or cos x = -sqrt
(25/169)
Since the values of cosine function are negative
in the second quadrant (`pi` /2 ; `pi` ), we'll keep only the negative value for cos
x.
cos x = -
5/13
The requested value for cos x is: cos x
= - 5/13.
No comments:
Post a Comment