We have to differentiate y =
x^(x^x)
y = x^(x^x)
ln y =
ln[x^(x^x)]
=> ln y =
(x^x)*ln(x)
take the derivative of both the sides with
respect to x
=> (1/y)*dy/dx = (x^x)/x + (ln
x)*(x^x)'
let z = x^x, ln z = x*ln
x
1/z(dz/dx) = x/x + ln
x
=> dz/dx = x^x + x^x*ln
x
=> (1/y)*dy/dx = (x^x)/x + (ln x)*(x^x*ln
x+x^x)
=> dy/dx = y[(x^x)/x + (ln x)*(x^x*ln x +
x^x)]
=> dy/dx = x^(x^x)[(x^x)/x + (ln x)*(x^x*ln x
+ x^x)]
The required derivative is dy/dx =
x^(x^x)[(x^x)/x + (ln x)*(x^x*ln x + x^x)]
No comments:
Post a Comment