We'll compute the formula of tangent of a difference of
two angles, using the information that tangent function can be written as a
fraction:
tan(x-y) =
`[sin(x-y)]/[cos(x-y)]`
We'll recall the formula for
sin(x-y) and cos(x-y):
sin (x - y) = `sin x*cos y - sin
y*cos x`
cos (x - y) = `cos x*cos y + sin x*sin
y`
tan(x-y) = `(sin x*cos y - sin y*cos x)/(cos x*cos y +
sin x*sin y)`
We'll force factor `cos x*cos y` , both
numerator and denominator:
tan(x-y) = `[cos x*cos y(tan x -
tan y)]/[cos x*cos y(1 + tan x*tan y)]`
We'll reduce like
terms:
tan(x-y) = `(tan x - tan y)/(1 + tan x*tan
y)`
The requested formula for tan(x - y) is:
`tan (x - y) = (tan x - tan y)/(1 + tan x*tan y)`
.
No comments:
Post a Comment