We have to integrate: [((log(5) x)^2 + sqrt 2*(log(5) x) +
9)/x] with respect to x.
use the relation log(a)x = ln x/ln
a
[((log(5) x)^2 + sqrt 2*(log(5) x) +
9)/x]
=> [((ln x/ln 5)^2 + sqrt 2*(ln x/ln 5) +
9)/x]
=> (1/ln 5)(ln x)^2/x + (sqrt 2/ln 5)(ln x)/x
+ 9/x
Int[(1/ln 5)(ln x)^2/x + (sqrt 2/ln 5)(ln x)/x +
9/x]dx
To find Int[(ln x)^2/x
dx]
let y = ln x
dy/dx = 1/x
or dy = dx/x
=> Int[y^2
dy]
=> y^3/3
substitute
y = ln x
=> (ln
x)^3/3
Similarly lnt[ln x/x dx] = (ln
x)^2/2
=> (1/ln 5)(ln x)^3/3 + (sqrt 2/ln 5)(ln
x)^2/2 + 9 ln x + C
The required integral is
(1/ln 5)(ln x)^3/3 + (sqrt 2/ln 5)(ln x)^2/2 + 9 ln x +
C
No comments:
Post a Comment