We'll start evaluating the integral, using
substitution.
Let sqrt(t^2 - 1) =
u.
We'll differentiate both
sides:
2tdt/2sqrt(t^2 - 1) =
du
du =tdt/sqrt(t^2 - 1)
We'll
determine t:
u = sqrt(t^2 -
1)
u^2 = t^2 - 1 => t^2 = u^2 +
1
t^4 = (u^2 + 1)^2
We'll
re-write the integral:
dt/t^3*sqrt(t^2-1) =
tdt/t^4*sqrt(t^2 - 1)
tdt/t^4*sqrt(t^2 - 1) =
du/(u^2 + 1)^2
du/(u^2 + 1)^2 =
(u^2 + 1 -
u^2)dt/(u^2 + 1)^2
(u^2 + 1 - u^2)dt/(u^2 + 1)^2 =
dt -
u^2dt//(u^2 + 1)^2
We'll integrate the
last integral by parts, using the formula:
f*g' = f*g
- f'*g
Let f = u => f' =
du
Let g' = u/(u^2 + 1)^2 => g = udu/(u^2 +
1)^2
We'll determine g using
substitution:
u^2 + 1 = v => 2udu = dv => udu
= dv/2
g = dv/2v^2 = -1/2(u^2 +
1)
We'll apply the formula of integrating by
parts:
u^2dt//(u^2 + 1)^2 = -u/2(u^2 + 1) +
du/2(u^2 + 1)
u^2dt//(u^2 + 1)^2 = -u/2(u^2 + 1) +
(1/2)*arctan u + C
The result of integration of the
function is:
dt/t^3*sqrt(t^2-1) = sqrt(t^2 - 1)
+ sqrt(t^2 - 1)/2t^2 - (1/2)*arctan [sqrt(t^2 - 1)] + C
To
determine the value of the definite integral, we'll use Leibniz Newton
formula:
dt/t^3*sqrt(t^2-1) = F(2) -
F(sqrt2)
F(sqrt2) = sqrt(2 - 1) + sqrt(2 - 1)/4 -
(1/2)*arctan [sqrt(2 - 1)]
F(sqrt2) = 1 + 1/4 - (
/8)
F(2) = sqrt(2^2 - 1) + sqrt(2^2 - 1)/8 - (1/2)*arctan
[sqrt(2^2 - 1)]
F(2) = sqrt 3+ sqrt 3/8 - (1/2)*arctan
[sqrt3]
dt/t^3*sqrt(t^2-1) = F(2) - F(sqrt2) =
sqrt 3+ sqrt 3/8 - (1/2)*arctan [sqrt3]- 5/4 + /
8
No comments:
Post a Comment