To determine the capacity of the
beer jug, we'll have to compute the volume of the conical
frustum:
, where r1 is the radius of top diameter and r2 is the radius of bottom
diameter.
We'll
calculate the radii r1 and
r2:
r1 =
14.6/2
r1
= 7.3
cm
r2 =
12/2
r2 =
6 cm
The
height of the conical frustum is: h = 28
cm.
Now,
we'll calculate the
volume:
Now,
we'll convert cube centimeters in
liters.
We
know that 1 cubic centimeter = 0.001 liters, therefore the liter capacity of the beer
jug is of 1.242173
liters.
The original
answer of 1.242173 liters appears to contain an arithmetic
mistake.
`(28*pi*(7.3^2+6^2+7.6*6))/(3)=(28*pi*133.09)/(3)`
If
you do not round pi you will get 11707.2078555/3=3902.4 cm^3
If you round pi
to 3.14 you will get 11701.2728/3= 3900.4 cm^3
so the
answer should be approximately 3.9 liters.
No comments:
Post a Comment