We'll use the substitution technique to evaluate the
indefinite integral of the given function.
Let `sqrt(x)` =
t => dx/2`sqrt(x)` = dt => dx/`sqrt(x)` =
2dt
`int` e^(`sqrt(x)` ) dx/`sqrt(x)` = 2`int` e^t
dt
2`int` e^t dt = 2 e^t +
C
`int` e^`sqrt(x)` dx/`sqrt(x)` = 2e^`sqrt(x)` +
C
The requested indefinite integral of the
given function is `int` e^`sqrt(x)` dx/`sqrt(x)` = 2e^`sqrt(x)` +
C.
No comments:
Post a Comment