since 3x^2 - x - 3 is not factorable, we will have to
            solve the equation 3x^2 - x - 3 = 0 using the quadratic
            formula.
the quadratic formula
            is:
let ax^2 + bx + c = 0
x =
            [-b + sqrt(b^2 - 4ac)]/2a   or  x = [-b - sqrt(b^2 -
            4ac)]/2a
with the equation 3x^2 - x - 3 = 0, we
            get:
                                a = 3, b = -1, c =
            -3
using this, substitution gives us the following
            expressions for x:
x(1) = [-(-1)+sqrt((-1)^2 -
            4(3)(-3))]/2(3)
       = [1+sqrt(1 +
            36)]/6
       = [1 +
            sqrt(37)]/6
x(2) = [-(-1)-sqrt((-1)^2 -
            4(3)(-3))]/2(3)
       = [1-sqrt(1 +
            36)]/6
       = [1 -
            sqrt(37)]/6
since x(1) and x(2) are the solutions to the
            equation, let a = x(1) and b = x(2).
a =
            [1+sqrt(37)]/6
a^2 =
            {[1+sqrt(37)]/6}^2
       =
            [1+sqrt(37)]^2/6^2
       =
            [1+2sqrt(37)+sqrt(37)^2]/36
       =
            [1+2sqrt(37)+37]/36
       =
            [38+2sqrt(37)]/36
       =
            [19+sqrt(37)]/18
b =
            [1-sqrt(37)]/6
b^2 =
            {[1-sqrt(37)]/6}^2
      =
            [1-sqrt(37)]^2/6^2
      =
            [1-2sqrt(37)+sqrt(37)^2]/36
      =
            [1-2sqrt(37)+37]/36
      =
            [38-2sqrt(37)]/36
      =
            [19-sqrt(37)]/18
a^2 + b^2 = [19+sqrt(37)]/18 +
            [19-sqrt(37)]/18
                 =
            [19+sqrt(37)+19-sqrt(37)]/18
                 = [19 +
            19]/18
                 =
            38/18
                 = 19/9   or 2
            1/9
No comments:
Post a Comment