Substitute the three points into the
equation
x = -1, y = 9
9 = a(-1)^2 +
b(-1) + c which simplifies to 9 = a - b + c
x = -3, y =
1
1 = a(-3)^2 + b(-3) + c which simplifies to 1 = 9a -3b +
c
x = 2, y = -9
-9 = a(2)^2 + b(2) + c which
simplifies to -9 = 4a + 2b + c
So now we have a set of 3
equations which we can solve using elimination
a - b + c
= 9 (1)
9a - 3b + c = 1 (2)
4a+ 2b + c = -9
(3)
(2) - (1)
9a - 3b + c = 1
-a + b
- c = -9
----------------------
8a - 2b = -8 Which we can reduce
to 4a - b = -4 (4)
(3) - (1)
4a + 2b + c =
-9
-a + b - c = -9
----------------------
3a + 3b =
-18 Which we can reduce to a + b = -6 (5)
Now compute (4)
+ (5)
4a - b = -4
a +b =
-6
------------------
5a = -10 solving for a we get a =
-2
Using (5) we get -2 + b = -6, or b = -4
Using (1) we get -2 -
-4 + c = 9, c = 7
So our function is
f(x) =
-2x^2 - 4x + 7
Checking:
f(2) = -2(2)^2 - 4(2) + 7 = -8 - 8 + 7 =
-9 gives point (2,-9)
f(-1) = -2(-1)^2 - 4(-1) + 7 = -2 + 4 + 7 = 9 gives
point (-1,9)
f(-3) = -2(-3)^2 - 4(-3) + 7 = -18 + 12 + 7 = 1 gives point
(-3,1)
Which are the points we were given.
Again our solution is
f(x) = -2x^2 - 4x + 7
No comments:
Post a Comment