The identity that has to be verified
is
(sin x)^2 + 2(cos x)^2 = (csc x)^2 - (cos x)^2(cot
x)^2
First, we'll manage the left side and we'll
write
(sinx)^2 + 2(cos x)^2 = (sinx)^2 + (cos x)^2 + (cos
x)^2
We'll use the Pythagorean
identity:
(sinx)^2 + (cos x)^2 =
1
(sinx)^2 + 2(cos x)^2 = 1 + (cos
x)^2
We'll manage the right side and we'll
write:
(csc x)^2 - (cos x)^2(cot x)^2 = 1/(sinx)^2 - (cos
x)^2*(cos x)^2/(sinx)^2
(csc x)^2 - (cos x)^2(cot x)^2 =
[1-(cos x)^4]/(sinx)^2
We'll have a difference of two
squares that returns the product:
(csc x)^2 - (cos x)^2(cot
x)^2 = [1 + (cos x)^2][1 - (cos x)^2]/(sinx)^2
But 1 - (cos
x)^2= (sinx)^2
(csc x)^2 - (cos x)^2(cot x)^2 = [1 + (cos
x)^2]*(sinx)^2/(sinx)^2
We'll simplify and we'll
get:
(csc x)^2 - (cos x)^2(cot x)^2 = [1 + (cos
x)^2]
We notice that managing both sides,
we'll get the same result [1 + (cos x)^2], therefore the identity (sin x)^2 + 2(cos x)^2
= (csc x)^2 - (cos x)^2(cot x)^2 is verified.
No comments:
Post a Comment