We'll have to integrate dy to get the primitive funtion
Y.
dy =
sqrt(1-x^2)dx/x^2
We'll integrate both
sides:
`int` dy = `int`
sqrt(1-x^2)dx/x^2
Let x = sin t => dx = cos t
dt
t = arcsin x
`int`
sqrt(1-x^2)dx/x^2 = `int` sqrt[1-(sin t)^2]*cos t dt/(sin
t)^2
We'll apply Pythagorean identity to
numerator:
`int` [sqrt (cos t)^2]*cos t dt/(sin t)^2 =
`int` (cos t)^2dt/(sin t)^2
`int` (cos t)^2dt/(sin t)^2 =
`int` [1-(sin t)^2]dt/(sin t)^2
`int` [1-(sin t)^2]dt/(sin
t)^2 =`int` ` ` dt/(sin t)^2 - `int` dt
`int` [1-(sin
t)^2]dt/(sin t)^2 = -cot t - t + C
`int` sqrt(1-x^2)dx/x^2
= - cot (arcsin x) - arcsin x + C
The
requested primitive function Y is: Y = - cot (arcsin x) - arcsin x +
C.
No comments:
Post a Comment