We'll solve this integral using substitution
technique.
Let cos x = t => - sin x dx =
dt
We'll use Pythagorean identity to write (sin x)^2, with
respect to (cos x)^2:
(sin x)^2 = 1 - (cos
x)^2
We'll raise to the cube both
sides:
(sin x)^6 = [1 - (cos
x)^2]^3
`int` (sin x)^6*(cos x)^5* sin xdx =`int` [1 - (cos
x)^2]^3*(cos x)^5* sin xdx
We'll re-write the integral
using the new variable t
`int` -
(1-t^2)^3*t^5*dt
We'll expand the
binomial:
`int` -(1 - 3t^2 + 3t^4 -
t^6)*t^5*dt
`int` (-t^5 + 3t^7 - 3t^9 + t^11)dt = -t^6/6 +
3t^8/8 - 3t^10/10 + t^12/12 + C
`int` (sin
x)^7*(cos x)^5 dx = -(cos x)^6/6 + 3(cos x)^8/8 - 3(cos x)^10/10 + (cos x)^12/12 +
C
No comments:
Post a Comment