(sinx)^3dx =
[(sinx)^2*sin
x]dx
According to Pythagorean identity, we'll
get:
(sinx)^2 = 1 -
(cosx)^2
[(sinx)^2*sin x]dx =
[(1 -
(cosx)^2)*sin x]dx
We'll remove the
brackets:
[(1 - (cosx)^2)*sin x]dx =
sin xdx -
(cosx)^2*sin xdx
We'll evaluate (cosx)^2*sin
xdx using substitution:
cos x =
t
We'll differentiate both
sides:
-sin x dx = dt
We'll
re-write the integral, changing the variable:
(cosx)^2*sin xdx = - t^2dt
- t^2dt = -t^3/3 +
C
(cosx)^2*sin xdx = -(cos x)^3/3 +
C
(sinx)^3dx =
sin xdx -
(cosx)^2*sin
xdx
(sinx)^3dx = -cos x + (cos x)^3/3 +
C
No comments:
Post a Comment