`int` (sinx)^3dx = `int` [(sinx)^2*sin
x]dx
According to Pythagorean identity, we'll
get:
(sinx)^2 = 1 -
(cosx)^2
`int` [(sinx)^2*sin x]dx = `int` [(1 -
(cosx)^2)*sin x]dx
We'll remove the
brackets:
`int` [(1 - (cosx)^2)*sin x]dx = `int` sin xdx -
`int` (cosx)^2*sin xdx
We'll evaluate `int` (cosx)^2*sin
xdx using substitution:
cos x =
t
We'll differentiate both
sides:
-sin x dx = dt
We'll
re-write the integral, changing the variable:
`int`
(cosx)^2*sin xdx = -`int` t^2dt
-`int` t^2dt = -t^3/3 +
C
`int` (cosx)^2*sin xdx = -(cos x)^3/3 +
C
`int` (sinx)^3dx = `int` sin xdx - `int` (cosx)^2*sin
xdx
`int` (sinx)^3dx = -cos x + (cos x)^3/3 +
C
No comments:
Post a Comment